Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group

نویسندگان

  • BENOÎT COLLINS
  • PIOTR ŚNIADY
چکیده

We revisit the work of the first named author and using simpler algebraic arguments we calculate integrals of polynomial functions with respect to the Haar measure on the unitary group U(d). The previous result provided exact formulas only for 2d bigger than the degree of the integrated polynomial and we show that these formulas remain valid for all values of d. Also, we consider the integrals of polynomial functions on the orthogonal group O(d) and the symplectic group Sp(d). We obtain an exact character expansion and the asymptotic behavior for large d. Thus we can show the asymptotic freeness of Haar-distributed orthogonal and symplectic random matrices, as well as the convergence of integrals of the Itzykson–Zuber type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Entries of Haar-invariant Matrices from the Classical Compact Groups

Let Γn = (γij)n×n be a random matrix with the Haar probability measure on the orthogonal group O(n), the unitary group U(n) or the symplectic group Sp(n). Given 1 ≤ m < n, a probability inequality for a distance between (γij)n×m and some mn independent F -valued normal random variables is obtained, where F = R, C or H (the set of real quaternions). The result is universal for the three cases. I...

متن کامل

Symbolic integration with respect to the Haar measure on the unitary group in Mathematica

We present IntU package for Mathematica computer algebra system. The presented package performs a symbolic integration of polynomial functions over the unitary group with respect to unique normalized Haar measure. We describe a number of special cases which can be used to optimize the calculation speed for some classes of integrals. We also provide some examples of usage of the presented package.

متن کامل

Some properties of angular integrals

We find new representations for Itzykson-Zuber like angular integrals for arbitrary β, in particular for the orthogonal group O(n), the unitary group U(n) and the symplectic group Sp(2n). We rewrite the Haar measure integral, as a flat Lebesge measure integral, and we deduce some recursion formula on n. The same methods gives also the Shatashvili’s type moments. Finally we prove that, in agreem...

متن کامل

Linear Functionals of Eigenvalues of Random Matrices

LetMn be a random n n unitary matrix with distribution given by Haar measure on the unitary group. Using explicit moment calculations, a general criterion is given for linear combinations of traces of powers of Mn to converge to a Gaussian limit as n ! 1. By Fourier analysis, this result leads to central limit theorems for the measure on the circle that places a unit mass at each of the eigenva...

متن کامل

Integration over Compact Quantum Groups

We find a combinatorial formula for the Haar functional of the orthogonal and unitary quantum groups. As an application, we consider diagonal coefficients of the fundamental representation, and we investigate their spectral measures. Introduction A basic question in functional analysis is to find axioms for quantum groups, which ensure the existence of a Haar measure. In the compact case, this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008